Dashboards
  • Reddit Stocks

  • Top Finance News Based on Comments and Tweets

  • Stocks Trading Ideas

  • Twitter Stocks

  • StockTwits Stocks

  • Most Discussed Crypto Currencies

  • New Crypto Currencies

  • Reddit Crypto Currencies

  • Reddit Penny Stocks

  • Reddit Spacs

  • Jim Cramer Stocks

  • Stock Market Movers

  • Stocks Sma 10 Crossed 20 Crossed 30

  • Stocks above 10 but below 20 and 30 SMA

  • Top Trending Crypto Currencies

  • Top US ETF Options By Open Interest

  • Most Active US ETF Options By Volume

Tradestie.com
  • Post Idea
  • Blogs
  • Dashboards
    • Economy Bell
      Weather Stocks
    • Oil Stocks
    • Smh Stocks
    • QQQ Stocks
    • SPY Stocks
    • ARKK Stocks
    • Cyber Security Stocks
    • Best Growth Stocks
    • More
  • Stocks
    • Filter Stocks
    • Reddit Stocks
    • Twitter Stocks
    • Stock Twits Stocks
    • Stock Market Movers
    • Stock Market Sector Performance
    • Stocks Trading Ideas
    • Stocks W Candlestick Patterns
    • Stocks Above 10 20 and 30 SMA
    • Stocks Above And Below 20 Day Price
    • Finance News
  • Crypto
    • Top Crypto Currencies
    • New Crypto Currencies
    • Top Crypto Stocks
  • Options
    • Top Stocks By Max Change In (IM)Options Open Interest
    • Top Stocks By Max Change In (OM)Options Open Interest
    • Top 10 Stocks By Max Change In Options Open Interest
    • Top Stocks By Options Money At Open Interest
    • Top Stocks By Options Open Interest
    • Top Stocks By Most Active Options
    • Top Stock Options By Volatility Change
  • Influencers
    • Cathie Woods
    • Jim Cramer
    • Pete Najarian
  • API
  • Profile Photo

    • Build Dashboard
    • Login
    • Privacy Policy
Tradestie.com
  • Post Idea
  • Blogs
  • Dashboards
    • Economy Bell
      Weather Stocks
    • Oil Stocks
    • Smh Stocks
    • QQQ Stocks
    • SPY Stocks
    • ARKK Stocks
    • Cyber Security Stocks
    • Best Growth Stocks
    • More
  • Stocks
    • Filter Stocks
    • Reddit Stocks
    • Twitter Stocks
    • Stock Twits Stocks
    • Stock Market Movers
    • Stock Market Sector Performance
    • Stocks Trading Ideas
    • Stocks W Candlestick Patterns
    • Stocks Above 10 20 and 30 SMA
    • Stocks Above And Below 20 Day Price
    • Finance News
  • Crypto
    • Top Crypto Currencies
    • New Crypto Currencies
    • Top Crypto Stocks
  • Options
    • Top Stocks By Max Change In (IM)Options Open Interest
    • Top Stocks By Max Change In (OM)Options Open Interest
    • Top 10 Stocks By Max Change In Options Open Interest
    • Top Stocks By Options Money At Open Interest
    • Top Stocks By Options Open Interest
    • Top Stocks By Most Active Options
    • Top Stock Options By Volatility Change
  • Influencers
    • Cathie Woods
    • Jim Cramer
    • Pete Najarian
  • API
  • Profile Photo

    • Build Dashboard
    • Login
    • Privacy Policy

Top 10 Python Libraries For Stock Options Trading

  1. pandas: for data manipulation and analysis
  2. numpy: for numerical computation
  3. scipy: for scientific and technical computing
  4. matplotlib: for data visualization
  5. yfinance: for retrieving stock data from Yahoo Finance
  6. zipline: for backtesting algorithmic trading strategies
  7. ib_insyc: for connecting to Interactive Brokers' Trader Workstation (TWS) API
  8. pyfolio: for performance and risk analysis of financial portfolios
  9. black: for option pricing using the Black-Scholes model
  10. py_vollib: for option pricing and implied volatility calculations.

Examples of each Python Library Package

Pandas

pandas: You can use pandas to load and manipulate option chain data, such as reading in a CSV file of options data and manipulating the dataframe to extract specific information, such as strike prices and expiration dates.

In [ ]:
import pandas as pd

# Read in options data from a CSV file
options_data = pd.read_csv('options_data.csv')

# Extract specific information from the dataframe
strike_prices = options_data['strike_price']
expiration_dates = options_data['expiration_date']

Numpy

numpy: You can use numpy for numerical computations, such as calculating the implied volatility of an option using the Black-Scholes model.

In [ ]:
import numpy as np
from scipy.stats import norm

# Define the Black-Scholes function
def black_scholes(S, K, T, r, sigma):
    d1 = (np.log(S / K) + (r + 0.5 * sigma ** 2) * T) / (sigma * np.sqrt(T))
    d2 = d1 - sigma * np.sqrt(T)
    call = S * norm.cdf(d1) - K * np.exp(-r * T) * norm.cdf(d2)
    return call

# Calculate the implied volatility of an option
S = 100.0  # Stock price
K = 105.0  # Strike price
T = 1.0    # Time to expiration (in years)
r = 0.05   # Risk-free rate
call_price = 9.0  # Market price of the call option

implied_vol = optimize.newton(lambda x: black_scholes(S, K, T, r, x) - call_price, 0.2)

Scipy

scipy: You can use scipy for scientific and technical computing, such as using the scipy.optimize.minimize function to find the optimal values of parameters in an options trading strategy.

In [ ]:
from scipy.optimize import minimize

# Define the objective function for optimization
def objective(x):
    # x[0], x[1] are the parameters to optimize
    return (x[0] - 2)**2 + (x[1] - 3)**2

# Define the initial guess for the optimization
x0 = [0, 0]

# Perform the optimization
res = minimize(objective, x0)

# Print the optimal values of the parameters
print(res.x)

Matplotlib

matplotlib: You can use matplotlib to create visualizations of options data, such as creating a graph of the implied volatility surface for a specific stock.

In [ ]:
import matplotlib.pyplot as plt

# Create a scatter plot of implied volatilities
plt.scatter(strike_prices, implied_volatilities)

# Add labels to the axes
plt.xlabel('Strike Price')
plt.ylabel('Implied Volatility')

# Show the plot
plt.show()

yfinance

yfinance: You can use yfinance to retrieve stock data from Yahoo Finance, for example you can use it to download historical option prices for a specific stock and then use the data in your options trading strategy.

https://tradestie.com/apps/user/blog/how-to-use-yfinance-package-to-get-stock-data-free/

zipline

zipline: You can use zipline to backtest an options trading strategy, such as implementing a basic moving average strategy and testing it against historical options data.

In [ ]:
from zipline.api import order_target, record, symbol

# Define the moving average strategy
def moving_average_strategy(context

    # Access the 30-day moving average from the context
    ma = context.moving_average

    # Get the current stock price
    price = context.portfolio.positions[symbol('AAPL')].last_sale_price

    # Check if the current price is above or below the moving average
    if price > ma:
        # Buy the stock
        order_target(symbol('AAPL'), 1)
    else:
        # Sell the stock
        order_target(symbol('AAPL'), 0)

    # Record the current price and moving average
    record(price=price, ma=ma)

# Run the strategy
results = run_algorithm(start=datetime(2018, 1, 1),
                       end=datetime(2018, 12, 31),
                       initialize=initialize,
                       handle_data=moving_average_strategy)

ib_insync

ib_insyc: You can use ib_insyc to connect to Interactive Brokers' Trader Workstation (TWS) API and retrieve real-time options data, and also to execute trades based on your options trading strategy.

In [ ]:
from ib_insync import IB

# Connect to TWS
ib = IB()
ib.connect()

# Request option chain data for a specific stock
ib.reqSecDefOptParams(underlyingSymbol='AAPL', futFopExchange='SMART', underlyingSecType='STK')

# Execute an options trade
ib.placeOrder(contract, OrderSell('SELL', 1))

pyfolio

pyfolio: You can use pyfolio to analyze the performance and risk of a portfolio of options trades, such as calculating the Sharpe ratio and the maximum drawdown of the portfolio.

In [ ]:
import pyfolio as pf

# Load returns data from a CSV file
returns = pf.utils.get_symbol_returns('AAPL', start='2010-01-01', end='2020-01-01')

# Calculate the Sharpe ratio of the returns
sharpe_ratio = pf.timeseries.calc_sharpe_ratio(returns)

# Calculate the maximum drawdown of the returns
max_drawdown = pf.timeseries.gen_drawdown_table(returns)['drawdown'].min()

black

black: You can use black to price options using the Black-Scholes model, for example you can use it to calculate the theoretical value of a specific option.

In [ ]:
from black import implied_volatility

# Define the option contract
contract = {'strike': 105.0, 'expiration': 1.0, 'option_type': 'call'}

# Calculate the implied volatility of the option
implied_vol = implied_volatility(9.0, contract, underlying_price=100.0, rf_rate=0.05)

py_vollib

py_vollib: You can use py_vollib to calculate the implied volatility of an option using various volatility models, like Black-Scholes-Merton and implied volatility surface.

In [ ]:
from py_vollib.black_scholes import implied_volatility

# Calculate the implied volatility of an option
underlying_price = 100
strike = 105
rf_rate = 0.05
days_to_expiration = 30
call_price = 9.0

implied_vol = implied_volatility(flag='c', S=underlying_price, K=strike, t=days_to_expiration/365, r=rf_rate, sigma=0.2)